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Third-order approximation to short-crested waves 

By J. R. C. HSU, Y. TSUCH1YA-f 
A N D  R. SILVESTER 

Department of Civil Engineering, The University of Western Australia, Nedlands 

(Received 10 June 1977 and in revised form 15 May 1978) 

Short-crested wave systems, as produced by two progressive waves propagating a t  
an oblique angle to each other, have an extremely important effect on a sedimxtary 
bed. The complex water-particle motions are conducive to lifting material into 
suspension and sustaining it in motion. In order to study this phenomenon rigorously, 
the variables of this wave system are derived to a third-order approximation by a 
perturbation method. The case of waves reflecting obliquely from a vertical wall is 
examined under the assumptions of full reflexion, uniform finite depth and an inviscid 
incompressible fluid. The new formulation reduces to standing or Stokes waves a t  
the limiting angles of approach. Expressions for kinematic quantitics are also presented. 

1. Introduction 
Wave reflexion from maritime structures, particularly seawalls and jetties, has 

been extensively examined both theoretically and experimentally for the two- 
dimensional case. It is relatively easy to produce the kinematic characteristics of 
standing waves to higher order and then to verify them in flume tests. However the 
case of oblique reflexion, resulting in short-crested wave systems, has received very 
little attention. 

This omission is understandable owing to the complexity of the phenomenon, but 
may also be due to the non-recognition of its wide occurrence in nature and its 
engineering importance. The production of a complete standing wave or clapotis in 
the laboratory is always difficult because of the implied equality of the amplitude and 
frequency of the incident and reflected wave. Its occurrence in nature, therefore, is 
even less likely since complete reflexion and the presence of secondary waves will 
continually detract from the ideal form. But the major difference in natural conditions 
is the changeability of the incident wave direction. 

Any oblique approach to a wall alters the kinematics of the water particles drastically 
from the two-dimensional model (Hsu 1977) .  Short-crested waves or clapotis gaufre' 
occur in conditions other than simple reflexion, for example through dizraction behind 
an offshore structure or island, differential reflexion of swell waves of differing period 
across the continental shelf or shoal, concurrent arrival of swell waves from different 
storm zones, and even in the generation process itself. Thus it could be said that for 
engineering applications the propagation of two wave trains a t  an angle to each other 
is of greater importance than that of progressive waves with a single direction, even 
when a spectrum may be included in the analysis or experiment. 

t Permanent address : Disaster Prevention Research Institute, Kyoto University, Japan. 
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FIGURE 1. Definition sketch of short-crested waves 
produced by reflexion showing co-ordinates. 

The computation of wave forces on structures should assume the worst conditions, 
which result from pure standing waves. On the other hand, the scouring from wave 
action a t  a sedimentary bed must take account of oblique reflexion. Silvester (1972) 
has reported tests on a movable bed model involving short-crested waves in front of 
a wall. He has noted a possible application in the transmis.;ion of littoral drift across 
river or harbour mouths without bar formation (Silvester 1975). He has also pointed 
out the importance of submerged reefs in the case of coastal sediment (Silvester 
1977) .  In  all such cases i t  is the persistent swell, which is virtually a single incident 
wave train, that  produces the long-term scour and not the multi-directional and 
multi-train storm waves. The latter could well cause a catastrophe whose origin was 
the long-period low-amplitude swell arriving continually froin distant storms. 

I n  a long-term research programme into the effects of short-crested waves on 
sediment movement i t  is first necessary t o  know the kinematics of the water-particle 
motion. With this knowledge the placement of sand grains into suspension could be 
predicted for any incident wave in a particular depth of water. The horizontal move- 
ment of this material could then be related to the mass transport of the water particles 
due to this complex ware system. Such net motion will vary across the crest length, or 
normal to the propagation direction of the combined crests, being maximal along the 
crests and minimal half-way between. 

Short-crested waves are defined as having a surface elevation which is doubly 
periodic in two perpendicular directions, these being along the reflecting wall and 
normal to  it. A symmetrical diamond-shaped crest pattern, with flat troughs and steep 
crests, can represent the short-crested wave system in plan as seen in figure 1 .  Since 
most engineering applications will be for finite depths of water (not necessarily 
shallow in the mathematical sense) and for waves of finite amplitude, a general 
solution is therefore required which is a higher approximation than linear, and of 
a t  least third order. 
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Fuchs (1952) obtained a second-order solution, based upon t'he work of Stokes 
(1847), but did not test i t  to the limit of a standing wai'e in the case of normal approach 
to the wall. Chappelear (1961) extended this to third order in the same manner using 
a fornsal power expansion. Both of these solutions are in dimensional form, assuming 
steady motion when viewed from a co-ordinate system moving parallel to the wall 
with the speed of the wave. 

Chappelear (1961 ) employed an expansion parameter which was proportional to the 
ratio of wave height to wavelength of the short-crested system measured parallel to 
the wall. This is similar to the derivation of progressive waves of finite amplitude in 
that direction, but precludes the possibility of obtaining the standing wave, which is 
two-dimensional and a t  right angles to the wall, in the limit of normal incident 
approach. 

To overcome this difficulty the authors have related the wave steepness parameter 
to the wavelengths of the incident and reflected waves, which in the present, case are 
assumed to be the same. This permits the solut'ion to enconipass all angles of incidence 
and thus the solution can be extended to tshe limits for bot,h standing and Stokes 
waves. Another innovation, previously employed by Tadjbakhsli & Keller (19GO) in 
deriving standing waves of finite amplitude, is used in the simplificat'ion of the analysis. 
This is the dimensionless angular wave frequency [see equation (23)], which makes the 
complicat'ed series involved in t'his higher-order solution simpler to writ,e down. 

The assumptions employed are an inviscid incompressible fluid of uniform and 
finite depth. Also complete reflexion has been assumed, which implies equal wave 
height and period of the reflected and incident wave. The solution cannot, therefore, 
be used for short-crested systems produced by component waves of differing period 
or height, or the partial sbanding wave in t'he limit. For t'he case of waves reflecting 
obliquely from a vertical wall, the Mach-stem effect has been omitted. There are, 
however, many important engineering applicat'ions for such complex solutions if and 
when they become available. 

The general solutions for the velocity potential and surface elevation obtained for 
each order of approximation are finally rearranged to give so-ne of the more important 
physical quantities of this wave system. These include the surface elevation, the crest 
height above the still water level, the wave speed and the Eulerian water-particle 
velocities, plus the wave pressure variation throughout the whole regime. All solutions 
are presented in series form. 

2. Perturbation method 
Exact solutions for nonlinear problems in continuum mechanics are rare. A solution 

for the short-crested wave system is therefore obtained by successive approximations. 
A perturbation procedure is employed to solve the nonlinear governing equations for 
three-dimensional irrotational water waves in a finite depth. The set of linear equations 
so deduced then yields the desired solution to the original problem. 

Consider, as in figure 1, a three-dimensional irrotational wave motion bounded 
above by a free surface, below by a rigid horizontal bed and to one side by a rigid 
vertical wall. Assume the fluid to be inviscid, incompressible and of uniform finite 
depth. The resulting diamond-shaped crest pattern due to oblique reflexion will assume 
full wave reflexion, which implies equal amplitudes and periods for incident and 
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reflected components. The Mach-stem effect, which occurs a t  large angles between 
the incident wave crest and the wall, will be ignored. 

Using Cartesian co-ordinates as in figure 1, the velocity potential $ for irrotational 
flow gives the Eulerian velocity components of water particles as 

= $x, v = #,, w = A, (1)  

( 2 )  

~t+gr+*(@+#;+@) = 0,  (3) 

where the velocity potential 4 satisfies Laplace’s equation 

V2# = #xx + #,, + 922 = 0. 

The dynamic and kinematic boundary conditions at the free surface are 

r t + ~ x r x + ~ , r , - ~ z  = 0,  

while the bottom and wall boundary conditions are 

(4) 

$ , = O  a t  z = - d ,  & = O  at y=O, ( 5 )  

in which 7 is the water surface elevation, g the acceleration due to gravity, x, y and x 
the Cartesian co-ordinates and t the time. 

Putting all equations into dimensionless form, let E represent the small parameter 
ka, where a is the amplitude of the short-crested wave to first order and k is the wave- 
number 2n-/L, L being the wavelength of the incident or reflected wave. The following 
dimensionless quantities may then be introduced: 

1 2 = kx, Q = ky, 2 = kz, 8 =  at, a =  kd, 

$(x, y, z, t ) ,  potential function, 
k2 &a, 9 9 %  0 = - 

e(gW 

@(2,Q, 8) = (k/s) ~ ( x ,  y, t ) ,  
o = u/(gk)*, angular frequency, 

surface elevation, 

in which u is the angular frequency of the incident (and reflected) wave (i.e. 2n/T, 
where T is the wave period in seconda). 

The carets denoting dimensionless quantities will now be omitted for the sake of 
simplicity, unless otherwise specified. The governing equations (2)-(5) may now be 
transforrhed in terms of these dimensionless quantities : 

v2q5 = 0, 

r+w$t+&(@+$i+q5f) = 0 a t  x = €7, (8) 

~s-~rlt-~rx~,--Erly~, = 0 a t  = q, (9) 

q52= 0, at x = - d ,  q5, = 0 at y=O. (10)  

I n  order to solve for the current unknowns ( 9 , ~  and 0) the short-crested wave must 
be specified. As shown in figure 1,  let L be the wavelength of the incident and reflected 
waves and L, and L, the distances between crests in the x and y directions. Then the 
components of the wavenumber k may be defined respectively as 

m, = 2n-/L, = ksin8 = mk, n, = 2n-/L, = kcos0 = nk, (11)  
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where 8 is defined as in figure 1 ; thus 

When 6 becomes zero, a normal standing wave occurs; when it is in ,  a progressive 
wave equal to the incident component results.? 

To determine some coefficients of the general solution, additional conditions for 
6 = 0 and 477 are required. For the complete standing wave, conditions which were 
specified by Tadjbakhsh & Keller (1960) are used with some necessary modifications 
as follows: 

(13) 

/onJo2" r(y, t )  sin t cos y dt d y  = 0, 

$(y, z, t )  sin t cosy dt d y d z  = &r2(tanhd)4. (16) sy d lonJo2"  
Equation (13) applies to the conservation of water mass, whilst (14) determines the 
periodicity of the wave motion, both extended to the three-dimensional case. Equa- 
tions (15) and (16) dictate the phase and amplitude of wave motion. 

The progressive wave must be specified by 

r (x ,  t )  dx = 0, lo2" 
V$(x, 2, t + 277) = V$(z + 277) 2, t )  = V$(x, z, t ) ,  (18) 

which preserve the water mass, as in (13), and the periodicity in time and space. 

& Keller (1960), must be imposed, namely 
To provide a unique solution a further condition, introduced first by Tadjbakhsh 

n'tanhn'dltanhd + j 2  for n' 2 2, j 2 1. (19) 

A solution is sought for any value of d, but it will not be unique in satisfying (7)-( 10) 
unless it also satisfies (19). A discussion of this condition is included in the appendix. 

The problem set is that of determining solutions for the dimensionless physical 
quantities $,? and w that satisfy (7)-( 10) and the additional conditions mentioned. It 
is assumed that these variables can be expanded as power series in the small parameter 
B as 

f The relationships d = mi x and y  ̂ = n1 y were tried first, instead of 2 = kx and y^ = ky. How- 
ever, it was found that these could not separate completely the x from the y components in the 
final equatioiis for the two-dimensional cases. 
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The dimensionless velocity potential at  the free surface may be expressed in terms of 
the Taylor expansion at  z = 0 instead of z = €7, so that 

$(x, Y, €7, t)  = $0 + “ ( T O  $02 + $1) + “Y41$02 + +r; $022 + T O  $lz + 442) 
+ “(4% $02 + To41 $022 + 87: $0222 + 41 $12 + s4: $lzz 

+ 470 $22 + B h )  + O ( 6  (21) 

Substituting (21) into (8) and (9) and collecting terms of each order in e yields the 
necessary equations to each order of approximation for conditions a t  z = 0. 

3. Third-order approximation 
A generalized three-dimensional wave theory for the short-crested system will now 

be formulated to third order. The two expanded free-surface boundary conditions 
(8) and (9) will be used to obtain linear partial differential equations for each order 
of approximation in terms of e. The consistent form of cosny sin (mz- t )  will be 
adopted in formulating expressions for all potential functions for convenience of 
direct comparison with the Stokes wave (Skjelbreia 1959) and the standing wave 
(Goda & Kakizaki 1966) in the limiting conditions. The governing equations for each 
order of approximation are listed together with the procedure for solving them. The 
resulting expressions for the velocity potential, surface elevation and angular frequency 
are presented. The limiting two-dimensional cases are discussed. 

First-order approximation 

On introducing (20) and (21) into (7)-(lo), the terms in c0 are given by 

$ o m  + 6oyy  + $022 = 0, 

4o+’(’o$ot = 0, $02-’(’oTot = 0 at z = 0, 
doz= 0 at x = -d, $oy = 0 at y =  0. 

The solutions which satisfy the boundary conditions are easily obtained in a dimen- 
sionless form similar to that given by Tadjbakhsh & Keller (1960) and Goda & 
Kakizaki (1966) as follows: 

I cosh ( x  + d )  
$ o =  wo sinhd cos ny sin (mx - t), 

(23) 
v0 = cos ny cos (mx - t ) ,  OJ; = tanh d, 1 

in which m and n are defined as in (1 1) .  Equation (23) yields the appropriate limiting 
cases of a progressive wave as n -+ 0 and a standing wave as m + 0. 

Second-order approximation 

In  the same manner as for the fmt-order approximation, the terms in E are given by 
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By substituting (23) into the right-hand side of (24), the dynamic free-surface con- 
dition is transformed to 

7, + wo cjlt = 0, w;l cos ny cos (mz - t )  + $8[34 - wo2(m2 + n2) cos 2ny cos 2(mx - t ) ]  

+ 9[3wi - q y m 2  - n,)] cos 2(mx - t )  
+ g[wg - woym2 - n2)] cos 2ny + $8[wi - o,2(m2 + n2)] 

at z = 0 (25) 
while the kinematic free-surface condition becomes 

QllZ - wo y,, = w1 cos ny sin (mz - t )  - two1(m2 + n2 + 1) cos 2ny sin 2(mz - t )  

- %w;l(m2 - n2 + 1)  sin 2(mz - t )  at z = 0. (26) 

By differentiating (25) with respect to t and eliminating 71t from (25) and (26), the 
combined free-surface boundary condition is given by 

qblz + wt  (27) = 2w, COB ng sin (mz - t )  + (Q,  COB 2ny + Q,) sin 2(mx- t )  at x = 0, 

in which 
Q, = $ [ 3 4  - w;1(2m2 + 2n2 + I)],\ 

&, = & [ 3 4  - wi1(2m2 - 2n2 + l)].) 
A general solution for q5, which satisfies both Laplace’s equation and the other 

boundary conditions is assumed: 

m 

r=O 
Ql, = (Alr cos rmz + B,, sin rmz) cos m y  cosh r(z + d )  

m 

r = O  
+ 2 (C,, cos rmx + D,, sin rmx) cosh rm(z + d),  (29) 

in which A,,, Blr, C,, and D, are periodic functions of time. Inserting (29) into (27) 
yields the following differential equations : 

A,,,, +clot, = 0, (30) 

From (30)-(34), the coefficients Air, B1,, C,, and Dlr can be determined. For r 3 3, the 
A,, B,, Clr and D,, must vanish owing to their periodicity. The resulting solution of 
(30) is taken as 

(35) 

(36) 

4 0  + ClO = @lo t )  + P I O .  

The periodicity of A,, and B,, in (31) requires w1 = 0. It may thus be assumed that 

{Al1, Bll, Cll, Dll) = (qi cost + h,sint) for i = 1, . . ., 4. 
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C,, and D,, are zero because the coefficient of the second term in (32) is generally not 
an integer, except for normal progressive waves. For the progressive wave the solutions 
for C,, and D,, are included in (36) for i = 3 and 4 since the coefficient is unity. 

From (33) and (34) 

= (1+w~) [3w;3 -w;7 (2m2+2n2+1) ]  
16 cosh 2d 

(1 + w k )  [3w0 - w i 3  ( 2m2 - 2n2 + l)] (21 = 16 cosh 2md[( 1 + w;) - m(wm/uo)2] 

(37) 

in which o$, = tanh md. The values of alo and plo in (35) and the values of qi and hi in 
(36) must be determined. 

Inserting the above results into (29) and substituting 

9, = &(w: - oi2) - oo alo + wo[(ql sin t - A, cos t )  cos mx 

into (25) yields 

+ (q,  sin t - A, cos t )  sin mx] cosny cosh d + w0[(q3 sin t - A, cos t )  COB mx 

+ [other second-order terms in cos 2ny and cos 2(mx - t )  in (25)]. 

By applying (13) tor], as given by (39), it  is found that alo = &( - w;3+ wo). 
Employing the additional conditions (13)-( 18) arising from the limiting cases shows 

that qi and Ai are zero for all i. Thus all the integral constants except pl0, which is of 
no consequence, have now been evaluated. The complete solutions for the second-order 
approximation can now be written as 

+ (q4 sin t - A, cos t )  sin mx] cosh md (39) 

q5, = ,B1 t + p ,  cosh 2(2 + d )  cos 2ny sin 2(mx - t )  +/3, cosh 2m(2 + d )  sin 2(mx - t ) ,  (40) 

q1 = b ,  cos 2ny cos 2(mx - t )  + b, cos 2(mx - t )  + b, cos 2ny, (41) 

0, = 0, 

in which 

and 

where 

(42) 

11 = 3(-w;3+w0),  I 
KZ - 3(w;7 - wo) 

p z  = 16cosh2d ’ Is, = 16cosh2md - 16cosh2md 
(43) 

K ,  = K,/ (  1 + wh) ,  o;F, = tanh md. J 
It is interesting to observe that q51 contains one time-dependent term and one 

progressive form propagating in the x direction, but not in the y direction. Also, r ] ,  

has a non-constant term which is independent of time but dependent upon distance 
from the wall in the y direction. These are similar to the findings of Tadjbakhsh & 
Keller (1960). The limiting forms of Stokes waves for m = 1 and n = 0 and standing 
waves for m = 0 and n = 1 can be readily obtained. 
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Third-order approximation 

By collecting terms in c2, the governing equations in dimensionless form are 

9zxx + 42uu + $22, = 0, (46a)  

4(rz + wo 9%) = - 4% 9ot - WO(T14502t +To $ l Z t  + Srt $ O Z Z t )  - ro($ox $ O m  

+ $ou 9ou2 + 902 $022) - 90s 41s - 9 o u  $lU - $02 $12 at  2 = 0, (46b)  

H$22 - wo Tzt) = QW2 rot - (71 $022 + To 9122 + $7: $ozzz) + r O ( T 0 ~  9 o m  
+ T O Y  90,) + rox 9 1 X  + T O Y  9 1 U  + T l X  $02 + T l U  $o?/ at z = 0, (46c)  

# & = O  at z = - d ;  & , = O  a t  y = O .  ( 4 6 4  

To find the current unknowns $2, r2 and w,, the same procedure is followed as in the 
second-order approximation. Upon eliminating T~ from (46 b, c ) ,  the combined free- 
surface boundary condition is obtained as 

+ w i  $ztt = all cos ny sin (mx - t) + u13 cos 3ny sin (mx - t)  
+ 0131 cos ny sin 3(mx - t)  + 0 1 ~ ~  cos 3ny sin 3(mx - t )  at z = 0, (47 )  

in which 

all = 2w, + &( - 6wz7 + 8wi3  + 6w0 + 8 w 3  + $mu: w: K ,  + i ( w $  - 4m2 + 1) K ,  
+ m2[$z( - 3wi7 + 2 ~ , 3  - 430,) + a(mz - n 2 )  wi31 
+ n,[[~'s( - 30,7 + 2wi3 + 5w0) - i(m2 - n2) w033, 

+ n2[&(6wi7 - 4wi3 - 2w0) + &(mz - n2) w i 3 ] ,  

( 4 8 a )  

(48b)  

011~ = &( - 3wi7 + 8wG3 - 3w0 + 2 4 )  + m2[&( - 6wi7 + 4wi3 - low0)] 

0131 = $6 ( - 9 ~ ; '  + 64wi3 - 33w0 + 18~6)  + 2mwg W& K,  + 4(3w$ - 8m2 - 1) K,  
+ m2[&( - 18wi7 + 4wi3 - 30w0) + i (m2 - n2) wi3] 
+ nz[-&( 1 8 ~ ; ~  - 4 ~ , 3  + 2w0)], (48c)  

( 4 8 4  

In finding the general solution for $,, it is assumed that only the first and third 

013~ = i$( - 27wi7 + 6 6 0 0 ~  - 3 9 ~ ~ ) .  

harmonic functions exist, so that 

x [cos(2s- 1)ny]{cosh[(2q- 1)2m2+(2s- 1)2n2]k(z+d)}, (49)  

in which A2q-l,2S-l, B2q--1,2s-l and A,, are periodic functions of time. The constants 
attached to x ,  y and z allow $2 to satisfy Laplace's equation. It is readily shown that 
(49)  satisfies the bottom and wall boundary conditions. 

Inserting (49 )  into (47 )  yields the following differential equations: 

Azow = 0, (50) 
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I y3tanhy3d - 
(G] wt  [ B 3 j  

- 

A,,, + 3 tanh 3d A,, a 3 3  - sin 3t 

( B3,,,) w: [ B 3 j  = wi cosh 3d ( cos 3t) ' 

(53 )  

(54) 

For 2g - 1, 2s - 1 2 4, the factors A2q-l,2s-l and B2g-1,2s-1 must vanish owing to 
their periodicity. From (50 ) ,  this requires A,, = a,,t+,!3,,. From (51)' the periodicity 
of A,, and B,, requires the coefficient all to vanish. Hence for the short-crested waves 
w, is obtained from (48) with a,, = 0: 

w, = &( 613;' - 8wi3  - 6 ~ 0  - S W ~  - Bmwi u: K,  - &(ut - 4m2 + 1)  K ,  

+ m2[&(3w;7 - 2wi3 + 43w0) - &(m2 - n2) ~ 0 3 1  

+ n2[& 3wi7  - 2wi3 - 5w,) + &(m2 - n2) ~ 5 3 1 .  (56) 

Furthermore, the solutions to (52)-(54) can readily be found. 
After inserting all the results into equation (49) for #,, a solution for 7, can be found 

from (46b). In  addition, by applying (13) to q2, it  is found that az0 = 0. Finally, #, 
and 7, are given in dimensionless form by 

q52 = P13 cosh yl(z + d )  cos 3ny sin (mz - t )  +,!33L cosh y3(z  + d )  cos n y  sin 3(mx - t )  

+/333 cosh 3(2 + d )  cos 3ny sin 3(mx - t )  +P2,, (57) 

qz = [b,, cos n y  +b13 cos 3ny l  cos (mz - t )  + [b31 cos n y  + b,, cos 3ny l  cos 3(mz  - t ) ,  (58)  

in which Pz0 is an arbitrary but inconsequential constant just as Pl0 was previously. 
The other constants are given by 

P13 = a13/(y1 sinh y1 d - ot cosh y1 d )  

= [ 16 cosh y1 d(y, tanh y1 d - w 3 ] - l [ (  - 3w i7  + 8w;3 - 3w, + 2 4 )  

+ m2( - 6wG7 + 4 w i 3  - 100,) + n2(6wo7 - 4wi3 - 2w,) + 4n2(m2 - n2) w i 3 ] ,  (59a )  

P3, = [ 16 cosh y3 d(y, tanh y3 d - 9 ~ ; ) ] - ~  [ ( - 9ws7 + 6 4 0 ~ 3  - 33w, + 18w3 

+ 36mwi w z  K ,  + 2( 3 4  - 8m2 - 1)  K ,  + m2( - 180;~ + 4 0 ; ~  - 30w,) 

+ 4m2(m2 - n2) wo3 + n2( 180,~ - 4w i3  + 2w,)], (59b)  

(59c) @33 = (128 cosh 34-1  (1  + 3w i )  ( 9wi13 - 2 2 ~ ; ~  + 130,~) 

and 

b,, = &(5w;4 - 4 + 44) + &muo w$Kl +&(w: + 2m2wi l -  wol) li, 
+&m2[(3wi8- 2 ~ ~ 4 -  1 ) - 4 ( m 2 - n 2 ) ~ ; 4 ]  

+ & n 2 [ ( 3 ~ ; ~ - 2 w ; ~ -  1 ) + 4 ( m 2 - n 2 ) w i 4 ] ,  (60a) 

b 13 - - -l Id( 9 ~ ; ~ - 6 + 2 w 3 - & m ~ ( 3 0 ; ~ + 5 ) + & n ~ ( 3 0 0 ~ + 1 )  

+ [16(y, tanh y1 d - w: ) ] - l [ (  - 3 ~ ; ~  + 8wz2 - 3 4  + 2w:) + m2( - 6ws6 

+ 4 ~ ; ~  - 100;) + n2(6wi6 - 4 ~ ; ~  - 2 4 )  + 4n2(m2 - n2) ~ ~ 2 1 ,  (Gob) 
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b 31 - - 1 d  2 1 w i 4  - 10 + 6 4 )  + $muo w i  K,  - &m2 (3wi8 + 5.) + &n2 (3wi8+ 1) 
+ $(w$ - m2wi1) K,  
+[3/16(y,tanh y3d-9w3][( -990i~+64w;~-33w~+ 18w$)+36mw$u:K1 

+ 2K,( 3w; - 8m200 - wo) + n2( 18wG6 - 4wZ2 + 20;) 

+ m2( - 18wS6 + 4 w i 2  - 30~:) + 4m2(m2 - n2) ~ 5 ~ 1 ,  (60c) 

( 6 0 4  

b,, = T$( -30,~+2lw;~- 15)+[16(tanh3d-3w$)]-1[(-27w;6+66w,2-39w~)]. 

It is now necessary to confirm that this third-order short-crested wave theory can 
be reduced to the normal Stokes or standing wave. Substituting m = 0 and n = 1 
for normal standing waves into (45) and (55) results in w, = 0,  K ,  = K ,  = - (w;3+ 3w0) 
and y, = 3, y3 = 1. The complete set of constants related to q5, and 7, is then directly 
deduced from (59) and (60), and w2 from (56). These are identical to those derived by 
Goda & Kakizaki (1966) and Tadjbakhsh & Keller (1960) for finite water depths, 
with the following constants: 

Therefore the present short-crested wave theory does provide direct access to pure 
standing waves of finite amplitude. 

However, in reducing (57) and (58) to Stokes waves, some coefficients need to be 
combined, as both cos ny and cos 3ny tend to unity when n -+ 0 ,  and m-t 1 for Stokes 
waves. Thus /?31 andp,, should be combined for 4, in ( 5 7 ) ;  also b,, should be combined 
with b,,, and b,, with b,, for 7, in (58). Similarly, in (47), the terms on the right-hand 
side become (a,, + a,,) sin (x - t )  and (aQ1 + a,,) sin 3(x - t ) .  Also, the periodicity con- 
dition requires a,, + a,, to vanish, thus giving w, for Stokes waves from (56) with the 
addition of a,, in (48). For Stokes waves, y, = 1 and y3  = 3 from (55), so that the 
coefficient (7, tanh y, d) /w;  in (52) equals unity, thus modifying (52) to 

in which the periodicity of A,, and B,, for Stokes waves requires the coefficient aI3 
to vanish, just as a,, does in (51). Therefore Pl3 = 0 in (59a). Finally, by letting m = 1 
and n = 0 in (56) and ( 4 8 b ) ,  the equation for w, in dimensionless form is 

w2 = h(9wi7 - 10wi3+ gw,). (65) 
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Compared with the third-order Stokes wave theory (Skjelbreia 1959; Laitone 1962), 
the value of w,/w, from (65) is identical to the usual expression 

(66) 
8 + cosh 4kd 9 + 8 cosh4 kd - 8 cosh2 kd 

8 sinh4 kd 
or 

8sinh4kd ' 

Finally the forms of q52 and 7, for Stokes waves will be deduced. 
In  (59), it can be shown that the value of p 3 1  is 3p33 for Stokes waves. By inserting 

the sum of p31 and /333 into (57) and using (20) and (6), the dimensional quantity #2  

results in the same equation as was obtained by Skjelbreia (1959), namely 

k2 
q52 = t ( k a ) ,  w01(p31+ /?33) cosh 3k(Z + d )  sin 3(kx - d )  

3( 11 - 2 C O S ~  2kd) 
cosh 3k(z + d )  sin 3(kx - d) .  

64 sinh7 kd 
= + ( k ~ ) ~  

I n  (60), substitution of m = 1, n = 0,  y1 = 1 and y3 = 3 gives 

so that the dimensional form of v2 from the sum of b31 and b,, becomes 

= &(ka)2 (b31+ b33) cos 3(kx-  vt) 
a 

The agreement with the third-order Stokes wave is thus complete. 

4. Wave variables 
Mathematical expressions for some pertinent physical variables describing short- 

crested waves can now be obtained. These include the surface elevation, crest height, 
wave steepness, wave speed, velocity potential, water-particle velocities and wave 
pressure. 

Surface elevation 
From the perturbation series ( 2 0 )  and the results of each order of approximation up 
to the third, values of 9, 7 and w can be completely formulated. The dimensional 
surface elevation 7 is given by 

k7@, y, t )  = c~^(O, 9, E) = [(c + $e3b11) cos Y + $e3b13 cos 3 Y ]  cos X 
+ [e2(bl cos 2 Y + b2) ]  cos 2X + [s2b3] cos 2 Y 
+ [ 4 ~ ~ ( b ~ ~  cos Y + b,, cos 3 Y ) ]  cos 3 X ,  (70) 

in which X = m2 - f, Y = nQ and all the constants bi are given by (44 ) ,  whilst all the 
bij are obtained from (60). It is implicit in (70) that the water surface profiles along 
the centre-lines of the combined crests (at y / L ,  = 0, +, 1 etc.) are similar to the 
progressive wave. The profile is more likely to be that of a cnoidal wave, when con- 
sidered to the third order. However, the wave amplitudes are a maximum a t  these 
locations and vary along the crest length, being a minimum near the locations half-way 
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FIGURE 2. Surface profiles of short-crested waves as functions of distance along the crest for 
different amplitudes in water of constant depth. 8 = 45", d / L i  = 0.1, t = 0. 

between (at y / L ,  = a, Q). Normal to the wall at  the crests and troughs, the profile 
resembles a standing wave. 

Examples of the surface profiles are plotted in figures 2 and 3. Figure 2 shows the 
variation of the surface elevation Icy according to (70) as a function of distance from 
the reflecting wall for various dimensionless amplitudes in 8 = ka for the case 0 = in, 
d / L ,  = 0.1 at time t = 0,  with Li the incident wavelength to first order. A comparison 
of surface profiles for different orders of wave theory is depicted in figure 3. The 
property of a flat trough and steep crest is more pronounced in the third-order solution. 

For the crest along the wall at  x = 0 and t = qm (where q is an even integer), the 
greatest surface elevation rmax in dimensional form as given by (70) is 

krmax = c + e2(b1 + b, + b3) + 3 ~ ~ ( b , ,  + b13 + b31+ b33). (71) 
The lowest section of the trough, krmin, occurs at t = qn, q being an odd integer. 
Therefore the total wave height H, of the short-crested wave at  the wall is given by 

ICHsc = k[rmax -rminlz,y=O = 2E[i + &82(bil + b13 -t + b33)I. (72) 
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FIGURE 3. Surface profiles of short-crested waves as a function of the 
order of the wave theory. 8 = 4 5 O ,  d / L ,  = 0.1, t = 0, e = 0.2. 

Y / L Y  

The presence of brl, b13, b31 and b3, in ( 7 2 )  influences the total wave height in the short- 
crested system in the same manner as in Stokes and standing waves to the third order 
of approximation. By inserting all the constants b,  from (60) into ( 7 2 ) ,  the full 
expression for H, can be formulated. It is too lengthy for presentation here. However, 
the complete expression does lead to the same result as for a normal standing wave, 
for exampIe 

where H i s  half the wave height to the third order as used by Goda & Kakizaki (1966). 

kH = ~ + ~ ~ € ~ ( 2 7 ~ , ' 2 + 2 7 0 0 ~ + 9 6 ~ 0 ' - 6 3 +  11~$+60!), (73) 

Crest height and wave steepness 

The ratio of  the maximum crest height vmax above the still water level to the total 
wave height H,, for the short-crested system can be expressed as 

The wave steepness of short-crested waves must account for the change in wavelength 
of the third-order solution. The perturbed quantity w from ( 2 0 )  and w2 from (56) give 
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This is the same expression as was obtained by Skjelbreia (1959) for a Stokes wave 
and by Goda & Kakizaki (1966) for st standing wave. 

In  terms of the distance between combined crests, in the direction of wave pro- 
pagation, the wavelength L, provides a steepness ratio from (72) and (76) of 

Wave speed 

The speed of the combined crests in the short-crested system can be transformed by 
linear wave theory from (23 ) .  Since cos(m4-t) = c o s ( m l x - ~ o t )  = cosm,(x-C,t), 
the wave speed for the first-order solution is defined by 

Cs = uo/ml = [g tanh kd]/ml, 

in which a. is the angular frequency 2n/T. This is exactly the same as the formula 
used by Fuchs ( 1  952), with the present notation. 

Substitution of the dimensionless angular frequency o given by (75) in (78) gives 
the third-order approximation of the wave speed: 

c, = a,( 1 + +€%O' w,) /rn, ,  
in which w2 is given by (56). 

(79) 

Velocity potential and water-particle velocities 

To non-dimensionalize the water-particle velocities, use is made of the following 
conditions from variable transforms: 

6 = .(a@&), a = €(a$/@), & = €(@/as) ,  (80) 

in which 6 is the perturbed value (20) obtained by inserting the solutions for q51, q52 
and q53 from ( 2 3 ) ,  (40) and (57). This leads to the dimensionless velocity potential 

4 = [w,(cosh Z/sinh d )  cos Y + &s2P13 cosh y1 2 cos 3 Y ]  sin X 
+ [eP2 cosh 2 2  cos 2 Y + eP3 cosh 2mZ] sin 2X 

+ $sz[P31 cosh y3 Z cos Y + ,833 cosh 3 2  cos 3 Y ]  sin 3 X  

+ 4 t" + P l O  + P 2 0 .  (81) 

The full forms of the diniensionless particle velocity components in the x, y and z 
directions can be derived as 

+e2(2P2 cosh 2 2  cos 2 Y cos 2 X  

+ 2P3 cosh 2rnZ cos 2 X )  

cash Z 
m 

+ 4e3((P13 cosh y1 Z cos 3 Y cos X + 3j331 cosh y3 Z cos Y cos 3 X  

+ 3,833 cosh 3 2  cos 3 Y cos 3X), (82) 

- = ( - wO sin Y sin X - s2( 2P2 cosh 2 2  sin 2 Y sin 2 X )  
a 
n sinh d 

- +e3( 3P13 cosh y1 Z sin 3 Y sin X + P31 cosh y3 2 sin Y sin 3 X  

+ 3/3,, cosh 3 2  sin 3 Y sin 3X), (83) 
7 F L Y  90 
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+ s2( 2P, sinh 2 2  cos 2 Y sin 2 X  
sinh 2 ( sinhd 

a =  &W0- 

+ 2mP3 sinh 2mZ sin 2 X )  + #c3(y1 P13 sinh y1 2 cos 3 Y sin X 
+ y3P31 sinh y3 Z cos Y sin 3 X  + 3/433 sinh 3 2  cos 3 Ysin 3 X ) ,  (84) 

in which X = m2-f, Y = ng and Z = S+8. 

Wave pressure 
The pressure in the wave motion is given by Bernoulli's theorem in terms of dimension- 
less quantities as 

where j9 = ( k / p g ) p  is the departure of the wave pressure from that of the atmosphere, 
p being the water density. Omitting the caret as before, the perturbed solution for p is 

@ = - z - BW#t - &2( 4: + +; + @), (85) 

p = - z + €(Po + spit p p , )  (86) 

to the third order of approximation. The substitution of q5 and w from (20) into (85) 
gives the following results for each order of approximation: 

(87) 

and $2 from ( 2 3 ) ,  (40) and (57) and defining 

1 Po = - wo $ O t ,  P1 = - wo 4lt - H4's  + 9% + 4&), 
Pz = - w2 4ot - wo 41, - 2(4oz 41% + 4021 $121 + $02 4lA. 

After inserting the solutions for q50, 
X ,  Y and 2 as above, the dimensionless pressure components are given by 

Po = 

P1 = 

P2 = 

cosh 2 
cos Y cos x, a 

[ - w0Pl - ?' cosh 2 2  + 2w0[P, cosh 2 2  cos 2 Y + P3 cosh 2mZ]  cos 2X 
8 smh2 d 1 

Ot [n2 cosh 2 2  - m2 - cos 2 Y ]  cos 2X 
+ 8 sinh2 d 

w' [n2 - m3 cosh 221 cos 2 Y ,  
+ 8 sinh2 d 

( [w ,  cosh 2 + 4Pz(rn - n + 1) cosh 2 + #&(m - n - 1 )  cosh 3 2  w0 

sinhd 
+ 2mP3 cosh ( 2 m  - 1) 21 cos Y COSX + [+P2(m + n + I )  cosh 2 

+ #P2(m + n - I )  cosh 3 2  +PI3  sinh d cosh y1 21 cos 3 Y cos X 
+ [&?,(m + n - 1) cosh 2 + 4Pz(m + n + 1) cosh 3 2  + 2mP3 cosh ( 2 m  + 1) 2 

+ 3& sinh d cosh y3 21 cos Y cos 3 X  + [&P2(m - n - 1)  cosh 2 

+ #P2(m - n + 1)  cosh 3 2  + 3P3, sinh d cosh 321 cos 3 Y cos 3 X ) .  (90) 

Appendix 
Equation (19) can be written in terms of the dimensionless depth d^ = 2 d / L  as 

n'tanhn'J/tanhii? =+ j 2  for n' >/ 2, j 2 1.  (91) 

The physical implication of the uniqueness of this equation requires that the frequency 
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d l L  0.05 0.10 0.153 0.20 0.50 

d  ̂= 2rd/LA 0.314 0.628 0.961 1.257 3.142 
W E  = tanhd 0.304 0.557 0.745 0.850 0.996 
2 tanh 2$/tanh { 3.G61 3.053 2.573 2.321 2.007 
3 tanh 32ltanh d 7.262 5.144 4.002 3.525 3.01 1 

TABLE 1.  Values of second and third harmonics of ( 19). 

of the nth spatial harmonic is not an integral multiple of the fundamental frequency, 
which therefore excludes certain fluid depths. Concus (1 964) has critically examined 
this limitation in his paper on standing capillary-gravity waves of finite amplitude. 
He concluded that it is physically impossible to satisfy this condition in practice as the 
set of excluded depths is everywhere dense in the interval (0, a) for 2, and claimed 
that this restriction is applicable to the work of Tadjbakhsh & Keller (1960). 

Defining w,, by tanh6 = w;, as in (23), gives 

and 

- 2w,z -- 2 tanh 6 
tanh 22 = 

l+ tanh26 1 + w $  

3tanh6+tanh3d - w;(3+w$) tanh 32 = - 
1 + 3 tanh22 1+3w$ . 

The values of 2 tanh 22/tanh 6 and 3 tanh 36/tanh 6 are listed in table 1 for values 
d / L  ranging from shallow to deep water. It is seen that shallow water corresponds to 
the range from about 3.7 to 2.0 whilst deep water corresponds to the range from 
7-3 to 3-0. It is apparent that the excluded depths for the second harmonic occur 
outside the engineering depth ratios of 0.05 and 0.50. 

The third-order harmonic contains a resonance at  d / L  = 0.153 since 

3 tanh 36ltanh 6 = 4.00. 

Near resonance can therefore occur over the range 0.146 < d / L  < 0.161 (5% either 
side). Thus, contrary to the conclusions of Concus (1964), who claimed 'a countable 
infinity' of excluded depths, these depths appear to be restricted to a narrow band. 

For standing waves of finite amplitude, w2 in (63) changes sign at d / L  = 0.17 as 
theoretically predicted by Tadjbakhsh & Keller (1960). Such a frequency reversal 
effect was subsequently observed experimentally by Fultz (1962), and it was proposed 
that it occurred a t  d / L  = 0.14. It is interesting to note that these two values are within 
10% either side of d / L  = 0.153. Numerical calculations have indicated that the 
corresponding d / L  value for w2 = 0 [see (56)] increases as the approach angle 0 of the 
incident wave increases. The sign change of w2 ceases at  0 N 25". It is therefore 
suggested that the uniqueness condition should be applied for 0 less than this value, 
if it  is to be related to wz. 
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